TP Détermination d'une constante d'acidité

Document 1 Définition de la constante d'acidité.

La constante d'acidité d'un couple acide / base est la constante d'équilibre de l'équation associée à la réaction qui se produit lorsqu'on ajoute l'acide à de l'eau.

$$Acide_{(aq)} + H_2O \iff Base_{(aq)} + H_3O^+_{(aq)}$$

$$K_a = \frac{[H_3O^+]_{eq} \times [Base]_{eq}}{[Acide]_{eq}}$$

 $[X]_{eq}$ est la concentration de l'espèce X à l'équilibre en mol.L-1.

$$pK_a = -\log K_a$$

Document 2 L'acide acétique.

L'acide acétique (du latin acetum) ou acide éthano \ddot{q} que est un acide carboxylique de formule chimique : $C_2H_4O_2$ ou CH_3COOH .

L'atome d'hydrogène (H) du groupe carboxyle (–COOH) des acides carboxyliques tels que l'acide acétique peut être libéré sous forme d'ion H⁺ (proton). C'est la capacité à libérer ce proton qui lui confère son acidité. L'acide acétique est un acide faible, monoprotonique en solution aqueuse, avec un pKa d'environ 4,75 à 25°C. Une solution à 1,0 mol.L⁻¹ (concentration du vinaigre domestique) a un pH de 2,4, ce qui signifie que seules 0,4 % des molécules d'acide acétique sont dissociées.

Document 3

Incertitude de mesure dans la mesure d'un volume V à la burette graduée (ici)

$$U_{V} = \sqrt{U_{\textit{Lecture totale}}^{2} + U_{\textit{Tolérance}}^{2} + U_{\textit{Température}}^{2}}$$

La lecture d'un volume correspond en fait à deux lectures : ajustage du zéro et lecture proprement dite,

$$U_{Lecture\;totale} = 2 \times \frac{2 \times graduations}{\sqrt{12}}$$
 ;

La tolérance, t, est indiquée sur l'instrument de verrerie (sous la forme \pm t mL) ; L'incertitude liée à la tolérance est $U_{tolérance} = \frac{2 \times t}{\sqrt{2}}$;

L'incertitude liée à la température (effets de dilatation du verre) se détermine par la relation :

 $U_{temp\'erature} = 2.4 \times 10^{-4} \times \Delta\theta$ avec $\Delta\theta = |\theta - 20|$ où θ est la température en °C.

L'incertitude de répétabilité est ici négligée devant les autres termes.

La notice du pH-mètre précise que dans les conditions des expériences menées ici, U(pH) = 0,02.

Manipulation, mesure de pH et mélange.

Etalonner le pH-mètre à l'aide de la notice et des solutions étalons. On désire réaliser divers mélanges contenant l'acide et sa base conjuguée.

Expérience 1

- Verser dans un bécher 1 : V= 20,0 mL de solution d'acide éthanoïque de concentration $C_1=1,0.10^{-1}$ mol.L⁻¹.
- Remplir une burette graduée avec une solution d'éthanoate de sodium de concentration $C_2 = 1,0.10^{-1}$ mol.L⁻¹.
- A l'aide de la burette contenant l'éthanoate de sodium, verser un volume $V_2 = 5,0$ mL d'éthanoate de sodium dans le bécher 1. Agiter et mesurer le pH (remplir le tableau).
- A l'aide de la burette, verser à nouveau 5,0 mL dans le même bécher (volume total de 10 mL ajouté). Après chaque addition, on agite le mélange et on mesure le pH.
- > Faire des ajouts pour remplir le tableau

Volume V ₁ (mL)	20	20	20	20
Volume V ₂ (mL)	5	10	15	20
pH				

Appeler le professeur pour lui présenter une de vos manipulations et le résultat de l'expérience. REA

Exploitation des résultats

1. Exprimer la constante d'acidité de l'acide éthanoïque en fonction des concentrations des espèces présentes.

2. A partir de l'expression de Ka, montrer que l'on peut exprimer pH en fonction de pKa, [AH] et [A-].

3. Dans la première partie, nous avons reconstitué différents états d'équilibre en réalisant des mélanges de quantités variables de AH et de A-. Afin d'établir une relation entre [AH]_{éq}, [A-]_{éq} et les concentrations initiales [AH]_i et [A-]_i, on construit un tableau d'évolution du système chimique.

Equation bilan		AH _(aq)	A-(aq)	A ⁻ (aq) +	AH _(aq)
Etat du système	Avancement	Quantité de matière en mol			
Initial	x=0	$[AH]_i(V_1 + V_2)$	$[A^-]_i(V_1 + V_2)$	0	0
Equilibre	X _{eq}	$[AH]_i(V_1 + V_2) - x_{eq}$	$[A^-]_i(V_1 + V_2) - x_{eq}$	x_{eq}	x_{eq}

$$[AH]_{eq} = \frac{[AH]_i(V_1 + V_2) - x_{eq} + x_{eq}}{(V_1 + V_2)} = [AH]_i \ et \ [A^-]_{eq} = \frac{[A^-]_i(V_1 + V_2) - x_{eq} + x_{eq}}{(V_1 + V_2)} = [A^-]_i$$

D'autre part :

$$[AH]_i = \frac{C_1 \times V_1}{(V_1 + V_2)} et [A^-]_i = \frac{C_2 \times V_2}{(V_1 + V_2)}$$

On a donc:

$$\frac{[AH]_{eq}}{[A^{-}]_{eq}} = \frac{[AH]_i}{[A^{-}]_i} = \frac{C_1 \times V_1}{C_2 \times V_2}$$

Et comme ici $C_1 = C_2$ on :

$$\frac{[AH]_{eq}}{[A^-]_{eq}} = \frac{V_1}{V_2}$$

Donner donc l'expression du pH en fonction de pKa, V_1 et V_2 .

- 4. Dans un tableur, rentrer les valeurs de V_1 , V_2 et pH.
- 5. Tracer le graphe représentant l'évolution du pH en fonction de log (V₂/V₁).
- 6. Commenter l'allure du graphe et le modéliser.

Appeler le professeur pour lui présenter le résultat de l'expérience. REA VAL

- 7. Déduire du graphe et de l'expression ci-dessus la valeur du pKa du couple CH₃COOH_(aq) / CH₃COO-_(aq) et la noter.
- 8. Le pH d'une solution de vinaigre est de 3,5. En déduire qui, de l'acide éthanoïque ou de l'ion éthanoate, est l'espèce prédominante dans ce vinaigre.
- 9. Afin d'analyser les différentes sources d'erreurs dans cette expérience, on se propose d'utiliser le logiciel GUM.

- a. A partir de la relation entre le pH, pKa, $log(V_2/V_1)$, évaluer les différentes sources d'erreur possibles sur la détermination du pKa. On suppose que l'incertitude sur la mesure du pH est U(pH)=0,02.
- b. Pour la première mesure par exemple, V_1 =20mL prélevé à la pipette jaugée et V_2 =5mL prélevé à la burette graduée, montrer que $U_{température}$ est négligeable. Calculer alors l'incertitude de mesure des volumes V_1 et V_2 .
- c. Ouvrir le logiciel GUM, entrer l'expression du pKa en fonction du pH et du rapport V_2/V_1 . Compléter les valeurs de l'estimateur et des sources d'erreur pour chaque mesurande.
- d. Afficher les résultats en pourcentage de la contribution à la variance. Quelle est la source d'erreur principale dans ce calcul ? Pourquoi l'erreur sur V_2 est elle plus grande que sur V_1 ?
- e. Donner la valeur du pKa avec son incertitude.

Expérience 2

Le but est de déterminer une nouvelle valeur du pKa à l'aide d'une seconde série de mesures et de vérifier que la valeur obtenue est en accord avec le résultat de la question 9.e.

- > Rincer la sonde pH-métrique après la première série de mesures.
- Verser dans un bécher 2, V=20,0 mL de la solution d'éthanoate de sodium de concentration $C_2=1,0.10^{-1}$ mol.L⁻¹.
- Mesurer le pH de la solution d'éthanoate de sodium.
- \triangleright Remplir une burette graduée d'acide éthanoïque de concentration $C_1=1,0.10^{-1}$ mol.L⁻¹.
- A l'aide de la burette contenant l'acide éthanoïque, verser un volume V_1 d'acide éthanoïque dans le bécher 2, $V_1 = 5.0$; 10,0; 15,0; 20,0 mL.
- Après chaque addition, on agite le mélange et on mesure le pH.
- > Porter les résultats dans le tableau réponse.

Volume V ₂ (mL)	20	20	20	20
Volume V ₁ (mL)	5	10	15	20
рН				

Appeler le professeur pour lui présenter le résultat de l'expérience. REA

10.Reprendre la même méthode que précédemment afin de déterminer de nouveau le pKa du couple CH₃COOH_(aq) / CH₃COO-_(aq). La valeur obtenue est elle cohérente avec la question 9.e.