Analyse dimensionnelle

La dimension d'une grandeur est, pour simplifier, sa nature physique. Une grandeur peut avoir la dimension d'une longueur, d'un temps, d'une masse... La dimension de la grandeur G se note [G].

Faire une analyse dimensionnelle permet de vérifier l'homogénéité d'une expression. Par exemple, on peut se poser la question de savoir si le produit masse x vitesse² est bien homogène à la dimension de l'énergie.

Une équation est homogène lorsque ses deux membres ont la même dimension. Une expression non homogène est nécessairement fausse.

La dimension de toute grandeur peut être formée à partir des 7 grandeurs fondamentales du système international d'unités :

Grandeur	Unité	Dimension associée
Longueur	m	L
Masse	kg	М
Temps	S	Т
Intensité courant électrique	А	I
Intensité lumineuse	Cd	J
Température	K	θ
Quantité de matière	mol	N

- La dimension du produit de deus grandeurs est le produit des dimensions de chacune des grandeurs : [AB]=[A].[B]
- La dimension de Aⁿ est égale à [A]ⁿ

Exemples

Dimension de g, intensité du champ de pesanteur [g]=

Dimension d'une force F, [F]=

Dimension d'une énergie E, [E]=

Dimension d'une pression p, [p]=

Vérifier l'homogénéité de l'expression $E_c = \frac{1}{2}mv^2$

Vérifier l'homogénéité de l'expression $E_p = m.g.h$

Vérifier l'homogénéité de l'expression F=k.x (sachant que k est la constante de raideur du ressort en $N.m^{-1}$ et x l'l'allongement du ressort en m).